(本小题满分12分)
某校选拔若干名学生组建数学奥林匹克集训队,要求选拔过程分前后两次进行,当第一次选拔合格后方可进入第二次选拔,两次选拔相互独立。根据甲、乙、丙三人现有的水平,第一次选拔,甲、乙、丙三
人合格的概率依次为0.5、0.6、0.4,第二次选拔,甲、乙、丙三人合格的概率依次为0.6、0.5、0.5。
(I)求第一次选拔后甲、乙两人中只有甲合格,而乙不合格的概率;
(II)分别求出甲、乙、丙三人经过前后两次选拔后合格入选的概率;
(III)设经过前后两次选拔后合格入选的人数为,求
一用户到电信局打算上网开户,经询问,有三种月消费方式:(1)163普通方式:上网资费2元/小时;(2)163A方式:每月30元(可上网50小时),超过50小时以上的资费为 2元/小时;(3) ADLSD方式:每月50元,时长不限(其它因素均忽略不计)。(每月以30日计算)
(1)、分别写出三种上网方式中所用月资费()与时间(
)的函数关系式;
(2)、在同一坐标系内画出三种上网方式中所用资费与时间的函数图象;
(3)、根据你的研究,给这一用户一个合理化的建议。
已知圆的方程为.圆内一点P
(1).若EF为过点P且倾斜角=1350的弦,求EF的长;
(2).若和
分别为过P
的最长弦和最短弦,求四边形
的面积。
已知圆M:x2+y2-4y+3=0, Q是轴上的动点,QA、QB分别切圆M
于A、B两点,(1)如果,求点Q的坐标及直线MQ的方程;
(2)求动弦∣AB∣的最小值。
如图,在四面体中,
,点
分别是
的中点.
求证:(1)直线面
;
(2)平面面
.
已知函数f(x)=
(1)、求f(2)与f(),f(3)与f(
);
(2)、由(1)中求得结果,你能发现f(x) 与f()有什么关系?并证明你的结论;
(3)、求f(1)+f(2)+f(3)+的值.