(本小题满分14分)设函数,已知函数
在
处有极值.
(Ⅰ)求实数的值;
(Ⅱ)当(其中
是自然对数的底数)时,证明:
;
(Ⅲ)证明:对任意的,不等式
恒成立.
(1)求证:是等差数列;
(2)求数列的前n项和Sn;
(3)若一切正整数n恒成立,求实数m的取值范围
(1)设为攻关期满时获奖的攻关小组数,求
的分布列及
;
(2)设为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数
在定义域内单调递减”为事件
,求事件
的概率
侧棱PA=PD=,底面ABCD为直角梯形,其中
BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出
的值;若不存在,请说明理由.
数列{an}的前n项和记为Sn,
(1)求{an}的通项公式;
(2)等差数列{bn}的各项为正,其前n项和为Tn,且,又
成等比数列,求Tn
设a为实数,记函数的最大值为g(a).
(1)设t=,求t的取值范围,并把f(x)表示为t的函数m(t);
(2)求g(a);
(3)试求满足的所有实数a.