某校10名学生组成该校“科技创新周”志愿服务队(简称“科服队”),他们参加活动的有关数据统计如下:
参加活动次数 |
1 |
2 |
3 |
人 数 |
2 |
3 |
5 |
(1)从“科服队”中任选3人,求这3人参加活动次数各不相同的概率;
(2)从“科服队”中任选2人,用表示这2人参加活动次数之差的绝对值,求随机变量
的分布列及数学期望
.
过点作直线
与抛物线
相交于两点
,圆
(1)若抛物线在点处的切线恰好与圆
相切,求直线
的方程;
(2)过点分别作圆
的切线
,
试求
的取值范围.
.(本题满分12分) 如图,PA垂直于矩形ABCD所在的平面, ,E、F分别是AB、PD的中点.
(1)求证:平面PCE 平面PCD;
(2)求三棱锥P-EFC的体积.
(本题满分12分)已知数列的通项公式为
,数列
的前n项和为
,且满足
(1)求的通项公式;
(2)在中是否存在使得
是
中的项,若存在,请写出满足题意的一项(不要求写出所有的项);若不存在,请说明理由.
在极坐标中,已知圆经过点
,圆心为直线
与极轴的交点,求圆
的极坐标方程.
已知点P(4,4),圆C:与椭圆E:
有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围.