平面直角坐标系中,将曲线(为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线.以坐标原点为极点,的非负半轴为极轴,建立的极坐标中的曲线的方程为,求和公共弦的长度.
已知双曲线C: (1) 若与C有两个不同的交点,求实数k的取值范围; (2) 若与C交于A,B两点,O是坐标原点,且求实数k的值.
已知椭圆,求以P(2,-1)为中点的弦所在的直线方程
已知B(-6,0),C(6,0)是三角形ABC的两个顶点,内角A、B、C满足,求顶点A运动的轨迹方程.
(1)若抛物线过直线与圆的交点, 且顶点在原点,坐标轴为对称轴,求抛物线的方程. (2)已知双曲线与椭圆共焦点,它们的离心率之和为,求双曲线方程.
已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根.若“p或q”为真,“p且q”为假,求m的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号