如图所示,已知在直角梯形中,
轴于点
.动点
从
点出发,沿
轴正方向以每秒1个单位长度的速度移动.过
点作
垂直于直线
,垂足为
.设
点移动的时间为
秒(
),
与直角梯形
重叠部分的面积为
.
(1)求经过三点的抛物线解析式;
(2)求与
的函数关系式;
(3)将绕着点
顺时针旋转
,是否存在
,使得
的顶点
或
在抛物线上?若存在,直接写出
的值;若不存在,请说明理由.
如图,反比例函数的图象与一次函
的图象交于
,
两点.
求反比例函数与一次函数的解析式;
根据图象回答:当
取何值时,反比例函数的值大于一次函数的值.
如图(1),某建筑物有一抛物线形的大门,小强想知道这道门的高度. 他先测出门的宽度,然后用一根长为
的小竹杆
竖直地接触地面和门的内壁,并测得
. 小强画出了如图(2)的草图,请你帮他算一算门的高度
.
要测量一个钢板上的小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测的钢珠顶端与小孔平面的距离h="8" mm(如图),求此小孔的直径d.
果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵树的产量就会减少2个,多种的桃树不能超过100棵,如果要使产量增加15.2%,那么应多种多少棵桃树?
请写出“直角三角形斜边上的中线等于斜边的一半”的逆命题,并进行证明: