设函数R),函数的导数记为.(1)若,求a、b、c的值;(2)在(1)的条件下,记,求证:F(1)+ F(2)+ F(3)+…+ F(n)<N*);(3)设关于x的方程=0的两个实数根为α、β,且1<α<β<2.试问:是否存在正整数n0,使得?说明理由.
若函数,当时,函数有极值为, (Ⅰ)求函数的解析式; (Ⅱ)若有3个解,求实数的取值范围。
设函数. (Ⅰ)求的最小正周期; (Ⅱ)求函数的最大值和最小值.
已知为一次函数,,且满足 (1)求的表达式 (2)若函数有零点,求的取值范围.
(本小题满分14分) 已知等差数列的公差为,且,数列的前项和为,且 (1)求数列,的通项公式; (2)记=求证:数列的前项和 。
在△ABC中,,cosC是方程的一个根,求△ABC周长的最小值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号