已知:,求
的值.
如图,抛物线 ,经过点 , , 三点.
(1)求抛物线的解析式及顶点 的坐标;
(2)连接 、 , 为抛物线上的点且在第四象限,当 时,求 点的坐标;
(3)在(2)问的条件下,过点 作直线 轴,动点 在直线 上,动点 在 轴上,连接 、 、 ,当 为何值时, 最小,并求出 的最小值.
如图, 是 的直径,点 在 上,连接 、 ,直线 与 的延长线相交于点 , , 交直线 于点 , 与 相交于点 .
(1)求证:直线 是 的切线;
(2)若 的半径为3, ,求 的长.
如图,直线 与双曲线 相交于 和 两点,与 轴交于点 ,与 轴交于点 .
(1)求 , 的值;
(2)在 轴上是否存在一点 ,使 与 相似?若存在求出点 的坐标;若不存在,请说明理由.
关于三角函数有如下公式: ,
,
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.
如:
根据上面的知识,你可以选择适当的公式解决下面问题:
如图,两座建筑物 和 的水平距离 为24米,从点 测得点 的俯角 ,测得点 的俯角 ,求建筑物 的高度.
2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.
(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?
(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?
(3)在(2)的条件下,已知一辆大型渣土运输车运输花费500元 次,一辆小型渣土运输车运输花费300元 次,为了节约开支,该公司应选择哪种方案划算?