游客
题文

如图,已知直线)与抛物线和圆都相切,的焦点.

(Ⅰ)求的值;
(Ⅱ)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,直线轴交点为,连接交抛物线两点,求△的面积的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.
(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;
(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.

(本小题满分14分)已知函数在点处的切线为
(1)求实数的值;
(2)是否存在实数,当时,函数的最小值为,若存在,求出的取值范围;若不存在,说明理由;
(3)若,求证:

(本小题满分13分)已知椭圆)经过点,离心率为,动点).
(1)求椭圆的标准方程;
(2)求以为坐标原点)为直径且被直线截得的弦长为的圆的方程;
(3)设是椭圆的右焦点,过点的垂线与以为直径的圆交于点,证明线段的长为定值,并求出这个定值.

(本小题满分12分)如图,直三棱柱中,分别为上的点,且

(1)求证:当时,
(2)当为何值时,三棱锥的体积最小,并求出最小体积.

(本小题满分12分)已知等比数列的前项和为,且成等差数列.
(1)求数列的通项公式;
(2)设数列满足,求适合方程的正整数的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号