(本小题满分12分)
下表是关于某设备的使用年限(年)和所需要的维修费用
(万元)的几组统计数据:
![]() |
2 |
3 |
4 |
5 |
6 |
![]() |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
(1)请在给出的坐标系中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程
;
(3)估计使用年限为10年时,维修费用为 多少?
(参考数值:)
选修4-1:几何证明选讲
如图,已知,过顶点
的圆与边
切于
的中点
,与边
分别交于点
,且
,点
平分
.求证:
.
四、选做题(本小题满分10分。请考生22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分)
22.选修4—4:坐标系与参数方程
求直线(
)被曲线
所截的弦长.
(本小题满分12分)
已知函数
(Ⅰ)若函数是定义域上的单调增函数,求实数
的最小值;
(Ⅱ)方程有两个不同的实数解,求实数
的取值范围;
(Ⅲ)在函数的图象上是否存在不同两点
,线段
的中点的横坐标为
,有
成立?若存在,请求出
的值;若不存在,请说明理由.
本小题满分12分)
如图,在四棱柱中,底面
为直角梯形,
,
,
平面
,
与平面
成
角.
(Ⅰ)若,
为垂足,求证:
(Ⅱ)求平面与平面
所成锐二面角的余弦值.
(本小题满分12分)
如图8—3,已知ΔOFQ的面积为S,且.(1)若
,求向量
与
的夹角θ的取值范围;(2)设
,
,若以O为中心,F为焦点的椭圆经过点Q,当
取得最小值时,求此椭圆方程.