(本小题满分12分)
下表是关于某设备的使用年限(年)和所需要的维修费用
(万元)的几组统计数据:
![]() |
2 |
3 |
4 |
5 |
6 |
![]() |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
(1)请在给出的坐标系中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程
;
(3)估计使用年限为10年时,维修费用为 多少?
(参考数值:)
如图,在直三棱柱中,
,
.棱
上有两个动点E,F,且EF = a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B—CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.
* |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
记等差数列{}的前n项和为
,已知
,
.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)令,求数列{
}的前项和
.
一种放射性元素,最初的质量为500g,按每年10﹪衰减.
(Ⅰ)求t年后,这种放射性元素质量ω的表达式;
(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)
已知一条曲线上的点到定点的距离是到定点
距离的二倍,求这条曲线的方程.
一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘船不改变航线,那么它是否会受到台风的影响?