如图,已知直线l与抛物线相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(I) 若动点M满足,求点M的轨迹C;
(II)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围
已知直线经过直线
与直线
的交点
,且垂直于直线
.
(1)求直线的方程;
(2)求直线与两坐标轴围成的三角形的面积
.
已知函数y=xlnx+1.
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.
如图,椭圆:
(
)和圆
:
,已知圆
将椭圆
的长轴三等分,且
,椭圆
的下顶点为
,过坐标原点
且与坐标轴不重合的任意直线
与圆
相交于点
、
.
(1)求椭圆的方程;
(2)若直线、
分别与椭圆
相交于另一个交点为点
、
.
①求证:直线经过一定点;
|
②试问:是否存在以为圆心,
为半径的圆
,使得直线
和直线
都与圆
相交?若存在,请求出所有
的值;若不存在,请说明理由.
在平面直角坐标系中,已知圆
,圆
.
(1)判断圆与圆
的位置关系;
|
(2)若动圆同时平分圆
的周长、圆
的周长,则动圆
是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为
.
(1)求曲线C的方程.
(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线
的方程.