((本小题满分13分)
若为集合
且
的子集,且满足两个条件:
①;
②对任意的,至少存在一个
,使
或
.
则称集合组具有性质
.
如图,作行
列数表,定义数表中的第
行第
列的数为
.
![]() |
![]() |
… |
![]() |
![]() |
![]() |
… |
![]() |
… |
… |
… |
… |
![]() |
![]() |
… |
![]() |
(Ⅰ)当时,判断下列两个集合组是否具有性质
,如果是请画出所对应的表格,如果不是请说明理由;
集合组1:;
集合组2:.
(Ⅱ)当时,若集合组
具有性质
,请先画出所对应的
行3列的一个数表,再依此表格分别写出集合
;
(Ⅲ)当时,集合组
是具有性质
且所含集合个数最小的集合组,求
的值及
的最小值.(其中
表示集合
所含元素的个数)
已知圆的方程为
,过点
作直线与圆
交于
、
两点。
(1)若坐标原点O到直线AB的距离为,求直线AB的方程;
(2)当△的面积最大时,求直线AB的斜率;
(3)如图所示过点作两条直线与圆O分别交于R、S,若
,且两角均为正角,试问直线RS的斜率是否为定值,并说明理由。
如图,⊥平面
,
=90°,
,点
在
上,点E在BC上的射影为F,且
.
(1)求证:;
(2)若二面角的大小为45°,求
的值.
如图,在四棱锥中,底面ABCD是一直角梯形,
,
,
,且PA=AD=DC=
AB=1.
(1)证明:平面平面
(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT
(3)求异面直线与
所成角的余弦值
已知点、
到直线
的距离相等,且直线
经过两条直线
和
的交点,求直线
的方程。
(本小题14分)抛物线与直线
相交于
两点,且
(1)求的值。
(2)在抛物线上是否存在点
,使得
的重心恰为抛物线
的焦点
,若存在,求点
的坐标,若不存在,请说明理由。