甲、乙、丙三人进行某项比赛,每局有两人参加,没有平局,在一局比赛中,甲胜乙的概率为,甲胜丙的概率为
,乙胜丙的概率为
,比赛的规则是先由甲和乙进行第一局的比赛,然后每局的获胜者与未参加此局比赛的人进行下一局的比赛,在比赛中,有人获胜两局就算取得比赛的胜利,比赛结束.
(1)求只进行两局比赛,甲就取得胜利的概率;
(2)求只进行两局比赛,比赛就结束的概率;
(3)求甲取得比赛胜利的概率.
设是等差数列,
是各项都为正数的等比数列,且
,
,
.
(Ⅰ)求,
的通项公式;
(Ⅱ)求数列的前n项和
.
已知函数的部分图像如图所示.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调递增区间.
在中,已知角
所对的边分别是
,边
,且
,又
的面积为
,求
的值.
(本小题满分14分)
设函数,
(1)求证:不论为何实数
在定义域上总为增函数;
(2)确定的值,使
为奇函数;
(3)当为奇函数时,求
的值域.
(本小题满分14分)
某漁业公司年初用98万元购买一艘捕魚船,第一年各种支出费用12万元,以后每年都增加
4万元,每年捕魚收益50万元.
(1)该公司第几年开始获利?
(2)若干年后,有两种处理方案:
①年平均获利最大时,以26万元出售该渔船;
②总纯收入获利最大时,以8万元出售渔船.
问哪种处理方案最合算?