用平行于棱锥底面的平面去截棱锥,则截面与底面之间的部分叫棱台.如图,在四棱台中,下底
是边长为
的正方形,上底
是边长为1的正方形,侧棱
⊥平面
,
.
(Ⅰ)求证:平面
;
(II)求平面与平面
夹角的余弦值.
已知中,角
、
、
的对边分别为
、
、
,角
不是最大角,
,外接圆的圆心为
,半径为
.
(Ⅰ)求的值;
(Ⅱ)若,求
的周长
已知数列满足
,
,等比数列
的首项为2,公比为
.
(Ⅰ)若,问
等于数列
中的第几项?
(Ⅱ)数列和
的前
项和分别记为
和
,
的最大值为
,当
时,试比较
与
的大小
对于数列,定义“
变换”:
将数列
变换成数列
,其中
,且
.这种“
变换”记作
.继续对数列
进行“
变换”,得到数列
,依此类推,当得到的数列各项均为
时变换结束.
(Ⅰ)试问经过不断的“
变换”能否结束?若能,请依次写出经过“
变换”得到的各数列;若不能,说明理由;
(Ⅱ)设,
.若
,且
的各项之和为
.
(ⅰ)求,
;
(ⅱ)若数列再经过
次“
变换”得到的数列各项之和最小,求
的最小值,并说明理由.
如图,抛物线与
轴交于两点
,点
在抛物线上(点
在第一象限),
∥
.记
,梯形
面积为
.
(Ⅰ)求面积以
为自变量的函数式;
(Ⅱ)若,其中
为常数,且
,求
的最大值.