游客
题文

(本小题满分14分)
如图,线段MN的两个端点M.N分别在x轴.y 轴上滑动,,点P是线段MN上一点,且,点P随线段MN的运动而变化.

(1)求点P的轨迹C的方程;
(2)过点(2,0)作直线,与曲线C交于A.B两点,O是坐标原点,设 是否存在这样的直线,使四边形的对角线相等(即)?若存在,求出直线的方程;若不存在,试说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)若建立函数模型制定奖励方案,试用数学语言表述该公司对奖励函数模型的基本要求,并分析函数是否符合这个要求,并说明原因;
(2)若该公司采用函数作为奖励函数模型,试确定最小的正整数的值.

已知函数
(1)求函数的最小正周期;
(2)当时,求函数的最大值,最小值.

记函数的定义域为的定义域为.若,求实数的取值范围.

已知为实数,数列满足,当时,
(Ⅰ);(5分)
(Ⅱ)证明:对于数列,一定存在,使;(5分)
(Ⅲ)令,当时,求证:(6分)

已知函数,(其中),设.
(Ⅰ)当时,试将表示成的函数,并探究函数是否有极值;
(Ⅱ)当时,若存在,使成立,试求的范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号