(本小题满分14分)
如图,线段MN的两个端点M.N分别在x轴.y 轴上滑动,,点P是线段MN上一点,且
,点P随线段MN的运动而变化.
(1)求点P的轨迹C的方程;
(2)过点(2,0)作直线,与曲线C交于A.B两点,O是坐标原点,设
是否存在这样的直线
,使四边形
的对角线相等(即
)?若存在,求出直线
的方程;若不存在,试说明理由.
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)若建立函数模型制定奖励方案,试用数学语言表述该公司对奖励函数
模型的基本要求,并分析函数
是否符合这个要求,并说明原因;
(2)若该公司采用函数作为奖励函数模型,试确定最小的正整数
的值.
已知函数.
(1)求函数的最小正周期;
(2)当时,求函数
的最大值,最小值.
记函数的定义域为
,
的定义域为
.若
,求实数
的取值范围.
已知为实数,数列
满足
,当
时,
,
(Ⅰ);(5分)
(Ⅱ)证明:对于数列,一定存在
,使
;(5分)
(Ⅲ)令,当
时,求证:
(6分)
已知函数,
,(其中
),设
.
(Ⅰ)当时,试将
表示成
的函数
,并探究函数
是否有极值;
(Ⅱ)当时,若存在
,使
成立,试求
的范围.