游客
题文

已知函数
(1)求函数的最小正周期;
(2)当时,求函数的最大值,最小值.

科目 数学   题型 解答题   难度 中等
知识点: 多面角及多面角的性质
登录免费查看答案和解析
相关试题

(本小题满分10分)选修4-1:几何证明选讲
如图,已知与圆相切于点,半径于点

(Ⅰ)求证:
(Ⅱ)若圆的半径为3,,求的长度.

(本小题满分12分)
已知函数.依次在处取到极值.
(Ⅰ)求的取值范围;
(Ⅱ)若成等差数列,求的值.

(本小题满分12分)
如图,点是椭圆上一动点,点是点轴上的射影,坐标平面内动点满足:为坐标原点),设动点的轨迹为曲线

(Ⅰ)求曲线的方程并画出草图;
(Ⅱ)过右焦点的直线交曲线两点,且,点关于轴的对称点为,求直线的方程.

(本小题满分12分)
如图,四棱锥的底面为菱形,平面分别为的中点,

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

本小题满分12分)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.

(Ⅰ)求这组数据的众数和中位数(精确到0.1);
(II)设表示样本中两个学生的百米测
试成绩,已知
求事件“”的概率.
(Ⅲ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如下

性别
是否达标


合计
达标

______
_____
不达标
_____

_____
合计
______
______

根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号