.(本小题满分12分)已知函数.
(1)求的值;
(2)若中,
,
,求
.
(本小题满分14分)已知函数,
.
(1)若,求函数
的单调区间;
(2)若恒成立,求实数
的取值范围;
(3)设,若对任意的两个实数
满足
,总存在
,使得
成立,证明:
.
(本小题满分13分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点,
①若直线AB的斜率为,求四边形APBQ面积的最大值;
②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
(本小题满分12分)如图,在四棱锥中,
平面
,
,四边形
满足
,
且
,点
为
中点,点
为
边上的动点,且
.
(1)求证:平面平面
;
(2)是否存在实数,使得二面角
的余弦值为
?若存在,试求出实数
的值;若不存在,说明理由.
(本小题满分12分)已知数列满足:
(Ⅰ)当时,求数列
的通项公式;
(Ⅱ)在(Ⅰ)的条件下,若数列满足
为数列
的前
项和,求证:对任意
.