12分)已知函数的图像在点
处的切线方程为
.
(Ⅰ)求实数的值;
(Ⅱ)设,解不等式
.
长方体中,E是BC的中点,M、N分别是AE、
的中点,
. (1) 求证:
平面
(2)求异面直线AE与所成角的余弦值
10分)某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命
(单位:小时)进行了统计,统计结果如下表所示:
分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
组数 |
48 |
121 |
208 |
223 |
193 |
165 |
42 |
频率 |
(1)将各组的频率填入表中;
(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;
(3)该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率
如图所示的几何体中,已知平面平面
,
,且
,
,
,求证:
甲、乙两篮球运动员互不影响地在同一位置投球,命中率分别为
与
,且乙投球2次均未命中的概率是
. 求:(1)乙投球的命中率
;(2)甲投球2次,至少命中1次的概率;(3)若甲、乙二人各投球2次,求两人共命中2次的概率