已知数列的前
项和为
,
,且
.
(1)计算;
(2)猜想的表达式,并证明.
已知为等比数列,
是等差数列,
(Ⅰ)求数列的通项公式及前
项和
;
(2)设,
,其中
,试比较
与
的大小,并加以证明.
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点
(Ⅰ)证明:BC1//平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.
一中食堂有一个面食窗口,假设学生买饭所需的时间互相独立,且都是整数分钟,对以往学生买饭所需的时间统计结果如下:
买饭时间 |
1 |
2 |
3 |
4 |
5 |
频率 |
0.1 |
0.4 |
0.3 |
0.1 |
0.1 |
从第一个学生开始买饭时计时.
(Ⅰ)求第2分钟末没有人买晚饭的概率;
(Ⅱ)估计第三个学生恰好等待4分钟开始买饭的概率.
已知角的顶点在原点,始边与
轴的正半轴重合,终边经过点
.
(Ⅰ)求的值;
(Ⅱ)若函数,求函数
在区间
上的取值范围.
已知函数(
,
),
.
(Ⅰ)证明:当时,对于任意不相等的两个正实数
、
,均有
成立;
(Ⅱ)记,
(ⅰ)若在
上单调递增,求实数
的取值范围;
(ⅱ)证明:.