一中食堂有一个面食窗口,假设学生买饭所需的时间互相独立,且都是整数分钟,对以往学生买饭所需的时间统计结果如下:
买饭时间 |
1 |
2 |
3 |
4 |
5 |
频率 |
0.1 |
0.4 |
0.3 |
0.1 |
0.1 |
从第一个学生开始买饭时计时.
(Ⅰ)求第2分钟末没有人买晚饭的概率;
(Ⅱ)估计第三个学生恰好等待4分钟开始买饭的概率.
(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,ABC=60
,EC
面ABCD,FA
面ABCD,G为BF的中点,若EG//面ABCD.
(1)求证:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
(本小题满分l0分)
已知圆的圆心为
,半径为
。直线
的参数方程为
(
为参数),且
,点
的直角坐标为
,直线
与圆
交于
两点,求
的最小值。
(本小题满分14分)
已知函数,
,满足
,
.
(1)求,
的值;
(2)若各项为正的数列的前
项和为
,且有
,设
,求数列
的前
项和
;
(3)在(2)的条件下,证明:.
(本小题满分12分)
椭圆的左、右焦点分别为
、
,点
,
满足
.
(1)求椭圆的离心率;
(2)设直线与椭圆相交于
两点,若直线
与圆
相交于
两点,且
,求椭圆的方程.
(本小题满分13分)
如图,四边形为矩形,
平面
,
为
上的点,且
平面
.
(1)求证:;
(2)求三棱锥的体积;
(3)设在线段
上,且满足
,试在线段
上确定一点
,使得
平面
.