(本小题满分13分)
如图,四边形为矩形,
平面
,
为
上的点,且
平面
.
(1)求证:;
(2)求三棱锥的体积;
(3)设在线段
上,且满足
,试在线段
上确定一点
,使得
平面
.
欲测河的宽度,在一岸边选定A、B两点,望对岸的标记物C,测得∠CAB=45°,∠CBA=75°,AB=120 m,求河宽.(精确到0.01 m)
在△ABC中,求证:-
=
-
.
(本小题满分12分)已知函数(
为常数)。
(Ⅰ)函数的图象在点(
)处的切线与函数
的图象相切,求实数
的值;
(Ⅱ)设,若函数
在定义域上存在单调减区间,求实数
的取值范围;
(Ⅲ)若,对于区间[1,2]内的任意两个不相等的实数
,
,都有
成立,求
的取值范围。
(本小题满分12分)双曲线C与椭圆有相同的焦点,直线y=
为
的一条渐近线.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点(0,4)的直线
,交双曲线
于A,B两点,交x轴于
点(
点与
的顶点不重合)。当
=
,且
时,求
点的坐标
(本小题满分12分)设等比数列的公比为
,前n项和
。
(Ⅰ)求的取值范围;
(Ⅱ)设,记
的前n项和为
,试比较
与
的大小。