(本小题满分14分)
已知函数,
,满足
,
.
(1)求,
的值;
(2)若各项为正的数列的前
项和为
,且有
,设
,求数列
的前
项和
;
(3)在(2)的条件下,证明:.
如图,△RBC中,RB=BC=2,点A、D分别是RB、RC的中点,且2BD=RC,边AD折起到△PAD位置,使PA⊥AB,连结PB、PC.
(1)求证:BC⊥PB;
(2)求二面角A﹣CD﹣P的平面角的余弦值.
如图所示,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,D为AC的中点.
(I)求证:B1C∥平面A1BD;
(Ⅱ)若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;
(Ⅲ)在(II)的条件下,求二面角B﹣A1C1﹣D的大小.
在△ABC中,角A、B、C的对边分别为a,b,c,且满足,2bsinA=a,BC边上中线AM的长为
.
(Ⅰ)求角A和角B的大小;
(Ⅱ)求△ABC的面积.
已知非零数列{an}满足a1=1,anan+1=an﹣2an+1(n∈N*).
(1)求证:数列是等比数列;
(2)若关于n的不等式<m﹣3有解,求整数m的最小值;
(3)在数列中,是否存在首项、第r项、第s项(1<r<s≤6),使得这三项依次构成等差数列?若存在,求出所有的r、s;若不存在,请说明理由.
已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(a为实数)
(1)求f(x)的单调增区间;
(2)求函数f(x)在区间[t,t+1](t>0)上的最小值h(t);
(3)若对任意x∈[,e],都有g(x)≥2exf(x)成立,求实数a的取值范围.