某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率;
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
(注:,n=a+b+c+d)
生产能手 |
非生产能手 |
合计 |
|
25周岁以上组 |
|||
25周岁以下组 |
|||
合计 |
在△ABC中,角A,B,C对应的边分别是a,b,c,已知.
(1)求角A的大小;
(2)若△ABC的面积,b=5,求sinBsinC的值.
已知某几何体的三视图和直观图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)求证:;
(Ⅱ)求直线与平面
所成角的余弦值;
(Ⅲ)设为
中点,在棱
上是否存在一点
,使
平面
?若存在,求
的值;若不存在,请说明理由.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
如图,在三棱锥中,平面
平面
,
为等边三角形,
,且
,O,M分别为
,
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)设是线段
上一点,满足平面
平面
,试说明点的位置
;
(Ⅲ)求三棱锥的体积.