(本小题满分12分)
投到“时尚生活”杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位初审专家都未通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则,不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3,各位专家独立评审.
(1)求投到该杂志的1篇稿件被录用的概率.
(2)若某人投到该杂志3篇稿件,求他被录用稿件篇数的分布列及期望值.
((本题15分)
两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是
,
(1)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少?
(2)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?
(3)两人各射击5次,是否有99%的把握断定他们至少中靶一次?
((本题15分)
在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=,N=
,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,
(1)求k的值。
(2)判断变换MN是否可逆,如果可逆,求矩阵MN的逆矩阵;如不可逆,说明理由.
(
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。
(
已知圆的极坐标方程为:.
将极坐标方程化为普通方程,写出圆的参数方程。
若点P(x,y)在该圆上,求x+y的最大值和最小值。
已知,且正整数n满足
,
(1)求n ;
(2)若,是否存在
,当
时,
恒成立。若存在,求出最小的
;
若不存在,试说明理由。
(3)若
的展开式有且只有三个有理项,求
。