游客
题文

(本小题满分10分)

(1)如图24—1,已知△ABC中,∠BAC=45°,AB="AC," AD⊥BC于D, 将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)如果⑴中AB≠AC,其他不变,如图24—2.那么四边形AEGF是否是正方形?请说明理由.
(3)在⑵中,若BD=2,DC=3,求AD的长.

科目 数学   题型 解答题   难度 较易
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,在一次测量活动中,小丽站在离树底部 E 5 m B 处仰望树顶 C ,仰角为 30 ° ,已知小丽的眼睛离地面的距离 AB 1 . 65 m ,那么这棵树大约有多高?(结果精确到 0 . 1 m ,参考数据: 3 1 . 73 )

某学校在落实国家“营养餐”工程中,选用了 A B C D 种不同类型的套餐.实行一段时间后,学校决定在全校范围内随机抽取部分学生对“你喜欢的套餐类型(必选且只选一种)”进行问卷调查,将调查情况整理后,绘制成如图所示的两个统计图.

请你根据以上信息解答下列问题:

(1)在这次调查中,一共抽取了  名学生;

(2)请补全条形统计图;

(3)如果全校有1200名学生,请你估计其中喜欢 D 套餐的学生的人数.

已知二次函数 y x 2 ﹣( 2 k + 1 x + k 2 + k k 0

(1)当 k 1 2 时,求这个二次函数的顶点坐标;

(2)求证:关于x的一元二次方程

有两个不相等的实数根;

(3)如图,该二次函数与x轴交于AB两点(A点在B点的左侧),与y轴交于C点,Py轴负半轴上一点,且 OP 1 ,直线APBC于点Q,求证: 1 O A 2 + 1 A B 2 = 1 A Q 2

已知AB是半径为1的圆O直径,C是圆上一点,DBC延长线上一点,过点D的直线交ACE点,且△AEF为等边三角形

(1)求证:△DFB是等腰三角形;

(2)若 DA 7 AF ,求证: CF AB

平行四边形ABCD的两个顶点AC在反比例函数 y = k x ( k 0 ) 图象上,点BDx轴上,且BD两点关于原点对称,ADy轴于P

(1)已知点A的坐标是(2,3),求k的值及C点的坐标;

(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号