某蔬菜基地种植甲、乙两种无公害蔬菜,生产一吨甲种蔬菜需用电力9千瓦时,耗肥4吨;生产一吨乙种蔬菜需用电力5千瓦时,耗肥5吨。现该基地仅有电力390千瓦时,肥240吨。已知生产一吨甲种蔬菜获利700元,生产一吨乙种蔬菜获利500元,在上述电力、肥的限制下,问如何安排甲、乙两种蔬菜种植,才能使利润最大?最大利润是多少?
已知数列共有
项
数列
的前
项的和为
满足
其中常数
(1)求证:数列是等比数列;
(2)若数列
满足
求数列
的通项公式
(3)对于(2)中的数列记
求数列
的前
项的和
如图是椭圆
的左右顶点
是椭圆上异于
的任意一点
直线
是椭圆的右准线
(1)若椭圆的离心率为
直线
求椭圆
的方程;
(2)设直线交
于点
以
为直径的圆交
于
若直线
恰好过原点
求椭圆
的离心率
如图有两条相交直线成
角的直路
交点是
甲、乙两人分别在
上,甲的起始位置距离
点
乙的起始位置距离
点
后来甲沿
的方向
乙沿
的方向
两人同时以
的速度步行
(1)求甲乙在起始位置时两人之间的距离;
(2)设后甲乙两人的距离为
写出
的表达式;当
为何值时
甲乙两人的距离最短
并求出此时两人的最短距离
如图在四面体
中
点
是
的中点
点
在
上,且
(1)若平面
求实数
的值;
(2)求证:平面平面
如图在平面直角坐标系
中
点
均在单位圆上
已知点
在第一象限的横坐标是
点
在第二象限
点
(1)设求
的值;
(2)若为正三角形
求点
的坐标