游客
题文

我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.

(1)图1中标出的是一种可能的复制结果,小明发现△A∽△B,其相似比为_________.在图1的基础上继续复制下去得到△C,若△C的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是________;
(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,直角 ΔABC 中, BAC = 90 ° D BC 上,连接 AD ,作 BF AD 分别交 AD E AC F

(1)如图1,若 BD = BA ,求证: ΔABE ΔDBE

(2)如图2,若 BD = 4 DC ,取 AB 的中点 G ,连接 CG AD M ,求证:① GM = 2 MC ;② A G 2 = AF · AC

如图,已知抛物线的对称轴是 y 轴,且点 ( 2 , 2 ) ( 1 , 5 4 ) 在抛物线上,点 P 是抛物线上不与顶点 N 重合的一动点,过 P PA x 轴于 A PC y 轴于 C ,延长 PC 交抛物线于 E ,设 M O 关于抛物线顶点 N 的对称点, D C 点关于 N 的对称点.

(1)求抛物线的解析式及顶点 N 的坐标;

(2)求证:四边形 PMDA 是平行四边形;

(3)求证: ΔDPE ΔPAM ,并求出当它们的相似比为 3 时的点 P 的坐标.

如图1,2分别是某款篮球架的实物图与示意图,已知底座 BC = 0 . 60 米,底座 BC 与支架 AC 所成的角 ACB = 75 ° ,支架 AF 的长为2.50米,篮板顶端 F 点到篮筐 D 的距离 FD = 1 . 35 米,篮板底部支架 HE 与支架 AF 所成的角 FHE = 60 ° ,求篮筐 D 到地面的距离(精确到0.01米)(参考数据: cos 75 ° 0 . 2588 sin 75 ° 0 . 9659 tan 75 ° 3 . 732 3 1 . 732 2 1 . 414 )

收发微信红包已成为各类人群进行交流联系、增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.

请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?

(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?

如图,已知 AB O 的直径, CD O 相切于 C BE / / CO

(1)求证: BC ABE 的平分线;

(2)若 DC = 8 O 的半径 OA = 6 ,求 CE 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号