游客
题文

我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.

(1)图1中标出的是一种可能的复制结果,小明发现△A∽△B,其相似比为_________.在图1的基础上继续复制下去得到△C,若△C的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是________;
(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

小明是一名升旗手,面对高高的旗杆,他想出了好几种方法测量方法,学过直角三角形后,他只用一把卷尺就测出了旗杆AB的高度.下面是他测量的过程和数据:
第一步:测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1m(如图1),
第二步:拉着绳子的下端往后退,当他将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1m,到旗杆的距离CE为8m,(如图2).他很快算出了旗杆的高度,请你也来试一试.

如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠DEC=90°

(1)△CDE是什么三角形?请说明理由
(2)若AD=6,AB=14,请求出BC的长.

如图所示,BC⊥ED,垂足为O,∠A=27°,∠D=20°,求∠ACB与∠B的度数.

如图,两个班的学生分别在M、N两处参加植树劳动,现要在道路AB、AC的交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请你通过尺规作图找出这一P点,(不写作法,保留作图痕迹).

(本题12分)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号