(本小题满分13分)
随机变量X的分布列如下表如示,若数列是以
为首项,以
为公比的等比数列,则称随机变量X服从等比分布,记为Q(
,
).现随机变量X∽Q(
,2).
X |
1 |
2 |
… |
n |
![]() |
![]() |
![]() |
… |
![]() |
(Ⅰ)求n 的值并求随机变量X的数学期望EX;
(Ⅱ)一个盒子里装有标号为1,2,…,n且质地相同的标签若干张,从中任取1张标签所得的标号为随机变量X.现有放回的从中每次抽取一张,共抽取三次,求恰好2次取得标签的标号不大于3的概率.
(本题分12分)
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;
(Ⅱ)若抽取后不放回,设抽完红球所需的次数为,求
的分布列及期望.
(本题分12分)
在中,角
的对边分别为
,
,
(Ⅰ)求的值;(Ⅱ)若
,求
的值.
(本小题满分15分)已知函数
(1)若函数在
上为增函数,求实数
的取值范围;
(2)当时,求
在
上的最大值和最小值;
(3)当时,求证对任意大于1的正整数
,
恒成立.
(本小题满分15分)已知椭圆经过点
,其离心率为
.
(1) 求椭圆的方程;
(2)设直线与椭圆
相交于
两点,以线段
为邻边作平行四边形
,其中顶点
在椭圆
上,
为坐标原点.求
到直线
的距离的最小值.
在等差数列中,
,其前
项和为
,等比数列
的各项均为正数,
,公比为
,且
,
.
(Ⅰ)求与
;(Ⅱ)证明:
≤
.