某项考试按科目、科目
依次进行,只有当科目
成绩合格时,才可继续参加科目
的考试.
已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目
每次考试成绩合格的概率均为
,科目
每次考试成绩合格的概率均为
.假设各次考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,
求的数学期望
.
已知向量,
(1)若,求
(2)设,若
,求
的值.
如图,已知三棱锥的侧棱
两两垂直,且
,
,
是
的中点.
(1)求异面直线与
所成的角的余弦值
(2)求二面角的余弦值
(3)点到面
的距离
先后2次抛掷一枚骰子,将得到的点数分别记为a, b.
(1)求直线ax+by+5=0与圆相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形(含等边三角形)的概率.
已知a>0,a≠1,设p:函数内单调递减,q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p与q有且只有一个正确,求a的取值范围
规定其中
,
为正整数,且
=1,这是排列数
(
是正整数,
)的一种推广.
(Ⅰ) 求的值;
(Ⅱ)排列数的两个性质:①,②
(其中m,n是正整数).是否都能推广到
(
,
是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(Ⅲ)已知函数,试讨论函数
的零点个数.