某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,得到如下数据:
序 号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
身高x(厘米) |
192 |
164 |
172 |
177 |
176 |
159 |
171 |
166 |
182 |
166 |
脚长y( 码 ) |
48 |
38 |
40 |
43 |
44 |
37 |
40 |
39 |
46 |
39 |
序 号 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
身高x(厘米) |
169 |
178 |
167 |
174 |
168 |
179 |
165 |
170 |
162 |
170 |
脚长y( 码 ) |
43 |
41 |
40 |
43 |
40 |
44 |
38 |
42 |
39 |
41 |
(Ⅰ)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成下面的联黑框列表: (3分)
|
高 个 |
非高个 |
合 计 |
大 脚 |
|
|
|
非大脚 |
|
12 |
|
合 计 |
|
|
20 |
(Ⅱ) 若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:
①抽到12号的概率;②抽到“无效序号(超过20号)”的概率. (6分)
(Ⅲ) 根据题(1)中表格的数据,若按99.5%的可靠性要求,能否认为脚的大小与身高之间有关系?(可用数据482=2304、582=3364、682=4624、 、
)(5分)
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若将的图象向右平移
个单位,得到函数
的图象,求函数
在区间
上的最大值和最小值.
已知函数.
(Ⅰ)当时,如果函数
仅有一个零点,求实数
的取值范围;
(Ⅱ)当时,试比较
与1的大小;
(Ⅲ)求证:.
直线与椭圆
交于
,
两点,已知
,
,若
且椭圆的离心率
,又椭圆经过点
,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点
(
为半焦距),求直线
的斜率
的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
已知数列和
满足:
,
其中
为实数,
为正整数.
(Ⅰ)对任意实数,证明数列
不是等比数列;
(Ⅱ)对于给定的实数,试求数列
的前
项和
;
(Ⅲ)设,是否存在实数
,使得对任意正整数
,都有
成立? 若存在,求
的取值范围;若不存在,说明理由.
已知半径为的圆的圆心在
轴上,圆心的横坐标是整数,且与
相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线与圆相交于
两点,求实数
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数,使得弦
的垂直平分线
过点
,若存在,求出实数
的值;若不存在,请说明理由.