(本小题满分12分)
某校高三一次月考之后,为了了解数学学科的学习情况,现从中随机抽出若干名学生此次的数学成绩,按成绩分组,制成右面频率分布表:
(1)若每组数据用该组区间的中点值(例如区间[90,100)的中点值是95)作为代表,试估计该校高三学生本次月考的平均分;
(2)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从所有学生中采用逐个抽取的方法任意抽取3名学生的成绩,并记成绩落在[110,130)中的学生数为ξ,求:
①在三次抽取过程中至少有两次连续抽中成绩在[110,130)
中的概率;
②ξ的分布列和数学期望.(注:本小题结果可用分数表示)
已知函数在
是增函数,
在
为减函数.
(1)求,
的表达式;
(2)求证:当时,方程
有唯一解;
(3)当时,若
在
内恒成立,求
的取值范围.
某百货超市欲在春节期间对某新上市商品开展促销活动,经测算该商品的销售量万件与促销费用
万元满足
.已知
万件该商品的进价成本为
万元,商品的销售价格定为
元/件.
(1)将该商品的利润万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?
已知函数.
(1)求曲线在点
处的切线方程;
(2)直线为曲线
的切线,且经过原点,求直线
的方程及切点坐标.
设函数.
(1)若函数在
时取得极小值,求
的值;
(2)若函数在定义域上是单调函数,求
的取值范围.
解关于的不等式
.