游客
题文

(本小题满分12分)
已知椭圆E:(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上
(1)求椭圆E的方程;
(2)设l1l2是过点G(,0)且互相垂直的两条直线,l1交E于A,B两点,l2交E于C,D两点,求l1的斜率k的取值范围;
(3)在(2)的条件下,设AB,CD的中点分别为M,N,试问直线MN是否恒过定点?
若经过,求出该定点坐标;若不经过,请说明理由。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

椭圆的一个焦点(c为椭圆的半焦距).
(1)求椭圆的方程;
(2)若为直线上一点,为椭圆的左顶点,连结交椭圆于点,求的取值范围;

设函数处取得极值,且
(Ⅰ)若,求的值,并求的单调区间;
(Ⅱ)若,求的取值范围.

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.

已知函数(m为常数,且m>0)有极大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率为-5的直线是曲线的切线,求此直线方程.

已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号