温州某私营公司生产一种产品,根据历年的情况可知,生产该产品每天的固定成本为14000元,每生产一件该产品,成本增加210元.已知该产品的日销售量与产量之间的关系式为,每件产品的售价与产量之间的关系式为.(Ⅰ)写出该公司的日销售利润与产量之间的关系式;(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润
解不等式
在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程为(为对数),求曲线截直线所得的弦长.
已知矩阵对应的线性变换把点变成点,求矩阵的特征值以及属于没个特征值的一个特征向量.
已知函数 (为实常数)。 (Ⅰ)当时,求函数的单调区间; (Ⅱ)若函数在区间上无极值,求的取值范围; (Ⅲ)已知且,求证: .
已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且 (1)求椭圆的方程; (2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q, 设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号