已知A、B、C是椭圆上的三点,其中点A的坐标为
,BC过椭圆m的中心,且
(1)求椭圆的方程;
(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,
设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.
如图,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于
轴上方,
.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离
的最小值.
已知函数的图象在点M(-1,f(-1))处的切线方程为x+2y+5=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.
设的内角
所对的边长分别为
,
.
(Ⅰ)求的值;
(Ⅱ)求的最大值.
已知各项都不相等的等差数列的前六项和为60,且
的等比中项.
(I)求数列的通项公式
;
(II)若数列的前n项和Tn.
已知函数为偶函数,且其图像上相邻的一个最高点和最低点之间的距离为
。
(1)求函数f(x)的解析式;
(2)若 的值。