调查某初中1000名学生的肥胖情况,得下表:
|
偏瘦 |
正常 |
肥胖 |
女生(人) |
100 |
173 |
![]() |
男生(人) |
![]() |
177 |
![]() |
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15。
(1)求的值;
(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?
(3)已知,
,肥胖学生中男生不少于女生的概率。
本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点, PD⊥平面ABCD,且PD=AD=,CD=1.
(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)证明:MC⊥BD.
(本小题满分12分)
在假期社会实践活动中,小明参观了某博物馆,博物馆的正厅有一幅壁画.刚进入大厅时,他在点A处发现看壁画顶端点C的仰角大小为,往正前方走4米后,在点B处发现看壁画顶端点C的仰角大小为
.
(Ⅰ) 求BC的长;
设函数.
(1)若,求函数
的极值;
(2)若,试确定
的单调性;
(3)记,且
在
上的最大值为M,证明:
.
在数列中,已知
.
(1)求数列的通项公式;
(2)求数列的前
项和
.
如图甲,在平面四边形ABCD中,已知,
,现将四边形ABCD沿BD折起,
使平面ABD平面BDC(如图乙),设点E、F分别为棱
AC、AD的中点.
(1)求证:DC平面ABC;
(2)求BF与平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦.
|
|||
|
|||