设函数
(Ⅰ)设,
,证明:
在区间
内存在唯一的零点;
(Ⅱ)设,若对任意
,有
,求
的取值范围
已知直线过点
与圆
相切,
(1)求该圆的圆心坐标及半径长 (2)求直线的方程
(满分12分)已知函数.(Ⅰ) 求
在
上的最小值;(Ⅱ) 若存在
(
是常数,
=2.71828
)使不等式
成立,求实数
的取值范围;
(Ⅲ) 证明对一切都有
成立.
(满分12分)已知点Pn(an,bn)满足an+1=an·bn+1,bn+1=(n∈N*)且点P1的坐标为(1,-1).(1)求过点P1,P2的直线l的方程;
(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上.
(满分12分)已知点,直线
:
交
轴于点
,点
是
上的动点,过点
垂直于
的直线与线段
的垂直平分线交于点
.
(Ⅰ)求点的轨迹
的方程;(Ⅱ)若 A、B为轨迹
上的两个动点,且
证明直线AB必过一定点,并求出该定点.
(满分12分)设函数。
(Ⅰ)若在定义域内存在,而使得不等式
能成立,求实数
的最小值;
(Ⅱ)若函数在区间
上恰有两个不同的零点,求实数
的取值范围。