(满分12分)已知点Pn(an,bn)满足an+1=an·bn+1,bn+1= (n∈N*)且点P1的坐标为(1,-1).(1)求过点P1,P2的直线l的方程;
(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上.
已知函数f(x) =2lnx-x2
(I)若方程在[
,e]内有两个不等的实根,求实数m的取值范围(e为自然对数的底数);
(II)如果函数,的图象与-轴交于两点力(
),B(
),且
求证:(其中
为
的导函数).
已知线段AB的两个端点A,B分别在x轴、y轴上滑动,|AB|=3,点M满足
(I)求动点M的轨迹E的方程;
(II )若曲线E的所有弦都不能被直线y=k(x-1)垂直平分,求实数k的取值范围.
在数列中,
(其中
为数列
的前n项和).
(I )求数列的通项公式
;
(II)若,求数列
的前n项和
,
如图,三棱锥S-ABC 中,SC丄底面ABC,,SC=AC=BC=
,M为SB中点,N在AB上,满足MN 丄 BC.
(I)求点N到平面SBC的距离;
(II)求二面角C-MN-B的大小.
某装置由两套系统M,N组成,只要有一套系统工作正常,该装置就可以正常工作。每套系统都由三种电子模块T1,T2,T3组成(如图所示已知T1,T2,T3正常工作的概率都是
,且T1,T2,T3能否正常工作相互独立.(注:对每一套系统或每一种电子模块而言,只要有电流通过就能正常工作.)
(I )分别求系统M,N正常工作的概率;
(II)设该装I中两套系统正常工作的套数为,求
的分布列和期望.