设是定义在上的函数,且对任意,当时,都有;(1)当时,比较的大小;(2)解不等式;(3)设且,求的取值范围。
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?
已知,,,求
(1)求证:;(2)求证: 不可能成等差数列。
附加题(按满分5分计入总分,若总分超过满分值以满分计算) 如果集合满足,则称()为集合的一种分拆.并规定:当且仅当时,()与()为集合的同一种分拆.请计算集合所有不同的分拆种数有多少种?
已知函数满足:①定义在上;②当时,;③对于任意的,有. (1)取一个对数函数,验证它是否满足条件②,③; (2)对于满足条件①,②,③的一般函数,判断是否具有奇偶性和单调性,并加以证明.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号