设是定义在
上的函数,且对任意
,当
时,都有
;
(1)当时,比较
的大小;
(2)解不等式;
(3)设且
,求
的取值范围。
若实数满足
,则
的最小值为_______.
(本小题满分14分)已知函数的导函数.
(1)若,不等式
恒成立,求a的取值范围;
(2)解关于x的方程;
(3)设函数,求
时的最小值.
(本小题满分14分)已知直线上有一个动点
,过点
作直线
垂直于
轴,动点
在
上,且满足
(
为坐标原点),记点
的轨迹为
.
(1)求曲线的方程;
(2)若直线是曲线
的一条切线,当点
到直线
的距离最短时,求直线
的方程.
(本小题满分14分)已知递增等差数列中的
是函数
的两个零点.数列
满足,点
在直线
上,其中
是数列
的前
项和.
(1)求数列和
的通项公式;
(2)令,求数列
的前n项和
.
(本小题满分14分)如图,在直三棱柱中,
,
、
分别是
,
的中点.
(1)求证:∥平面
;
(2)求证:平面平面
;
(3)若,
,求三棱锥
的体积.