游客
题文

(本小题满分12分)
有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长.
(1)请你求出这种切割、焊接而成的长方体容器的最大容积V1;
(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积V2>V1.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,在四棱锥中,底面,点E在线段AD上,且CE//AB。
(1)求证:CEPAD;
(2)若,AD=3,CD=,求四棱锥的体积。

已知为坐标原点,是常数),若.
(1)求关于的函数关系式
(2)若的最大值为,求的值;
(3)利用(2)的结论,用“五点法”作出函数在长度为一个周期的闭区间上的简图,并指出函数的单调区间

若函数f(x)=sin2ax-sinaxcosax(a>0)的图象与直线y=m相切,相邻切点之间的距离为.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0,求点A的坐标.

若a,b是两个不共线的非零向量,t∈R.
(1)若a,b起点相同,t为何值时,a,tb,(a+b)三向量的终点在一直线上?
(2)若|a|=|b|且a与b夹角为60°,t为何值时,|a-tb|的值最小?

已知函数f (x)=(1+)sin2x-2sin(x+)sin(x-).
(1)若tanα=2,求f(α);
(2)若x∈[],求f(x)的取值范围

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号