(本小题满分12分)如图,四棱锥的底面为菱形,平面,,分别为的中点,.(Ⅰ)求证:平面平面.(Ⅱ)求平面与平面所成的锐二面角的余弦值.
如图,已知梯形的一底边在平面内,另一底边在平面外,对角线交点到平面的距离为,若,求到平面的距离.
双曲线的左、右两个焦点分别为,点在双曲线上,且,求的面积.
已知为抛物线的顶点,为这条抛物线互相垂直的两条动弦. 求证:直线必过一定点.
在5件产品中含有2件次品,从这5件产品中选出3件所含的次品数设为的分布列,并求的数学期望.
已知点在以两坐标轴为对称轴的椭圆上,你能根据点的坐标最多写出椭圆上几个点的坐标(点除外)?这几个点的坐标是什么?
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号