(本小题满分10分)选修4-4:坐标系与参数方程
如图,已知点,
,圆
是以
为直径的圆,直线
:
(为参数).
(Ⅰ)写出圆的普通方程并选取适当的参数改写为参数方程;
(Ⅱ)过原点作直线
的垂线,垂足为
,若动点
满足
,当
变化时,求点
轨迹的参数方程,并指出它是什么曲线.
(本小题满分12分)
已知函数.
(1)当时,求函数
的单调区间和极值;
(2)当时,若对任意
,均有
,求实数
的取值范围;
(3)若,对任意
、
,且
,试比较
与
的大小.
(本小题满分12分)
在数列中,
.
(1)求的值;
(2)求数列的通项公式;
(3)求的最大值.
(本小题共12分)
在直角坐标系中,动点P到两定点
,
的距离之和等于4,设动点P的轨迹为
,过点
的直线与
交于A,B两点.
(1)写出的方程;
(2)设d为A、B两点间的距离,d是否存在最大值、最小值;若存在,求出d的最大值、最小值.
(本小题共12分)
甲、乙两个射手进行射击训练,甲击中目标的概率为,乙击中目标的概率为
,每人各射击两发子弹为一个“单位射击组”,若甲击中目标的次数比乙击中目标的次数多,则称此组为“单位进步组”.
(1)求一个“单位射击组”为“单位进步组”的概率;
(2)记完成三个“单位射击组”后出现“单位进步组”的次数,求
的分布列与数学期望.
(本小题共12分)
在三棱柱ABC—A1B1C1中,底面是边长为的正三角形,点A1在底面ABC上的射影O恰是BC的中点.
(1)求证:面A1AO面BCC1B1;
(2)当AA1与底面成45°角时,求二面角A1—AC—B的大小;
(3)若D为侧棱AA1上一点,当为何值时,BD⊥A1C1.