游客
题文

如图1:等边可以看作由等边绕顶点经过旋转相似变换得到.但是我们注意到图形中的的关系,上述变换也可以理解为图形是由绕顶点旋转形成的.于是我们得到一个结论:如果两个正三角形存在着公共顶点,则该图形可以看成是由一个三角形绕着该顶点旋转形成的.

① 利用上述结论解决问题:如图2,中,都是等边三角形,求四边形的面积;
② 图3中, ,仿照上述结论,推广出符合图3的结论.(写出结论即可)

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分15分)已知椭圆C:+=1(a>b>0)的离心率为,且经过点P(1,).
(1)求椭圆C的方程;
(2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M.问点M满足什么条件时,圆M与y轴有两个交点? 并求两点间距离的最大值.

(本小题满分15分)因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放,且个单位的药剂,它在水中释放的浓度(克/升)随着时间(天)变化的函数关系式近似为,其中.
若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(1)若一次投放4个单位的药剂,则有效治污时间可达几天?
(2)若第一次投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求的最小值.(精确到0.1,参考数据:取1.4)

(本小题满分14分)如图,在直三棱柱ABC—A1B1C1中,AB=AC,点D是BC的中点.

(1)求证:A1B//平面ADC1
(2)如果点E是B1C1的中点,求证:平面平面BCC1B1.

(本小题满分14分)已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量m=(sinA,1), n=(1,-cosA),且m⊥n.
(1)求角A;(2)若b+c=a,求sin(B+)的值.

(本小题满分12分)如图,在三棱锥中, 两两垂直,且.设是底面内一点,定义,其中分别是三棱锥、 三棱锥、三棱锥的体积.已知.
(Ⅰ)求的值;
(Ⅱ)若恒成立,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号