C.选修4-4:坐标系与参数方程
在直角坐标系中,已知曲线
的参数方程是
(
是参数),若以
为极点,
轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线
的极坐标方程.
已知椭圆:
=1(a>b>0)与双曲线
有公共焦点,且离心率为
.
分别是椭圆
的左、右顶点.点
是椭圆
上位于
轴上方的动点.直线
分别与直线
:
交于
两点.
(I)求椭圆的方程;
(II)当线段的长度最小时,在椭圆
上是否存在点
,使得
的面积为
?若存在,求出
的坐标,若不存在,请说明理由.
如右图,在平面直角坐标系中,已知“葫芦”曲线
由圆弧
与圆弧
相接而成,两相接点
均在直线
上.圆弧
所在圆的圆心是坐标原点
,半径为
;圆弧
过点
.
(I)求圆弧的方程;
(II)已知直线:
与“葫芦”曲线
交于
两点.当
时,求直线
的方程.
如图,在几何体中,四边形
为平行四边形,且面
面
,
,且
,
为
中点.
(Ⅰ)证明:平面
;
(Ⅱ)求直线与平面
所成角的正弦值.
已知直线l平行于直线,直线l与两坐标轴围成的三角形周长是15,求直线l的方程.
某几何体的三视图及其尺寸如右图,求该几何体的表面积和体积.