如右图,在平面直角坐标系中,已知“葫芦”曲线
由圆弧
与圆弧
相接而成,两相接点
均在直线
上.圆弧
所在圆的圆心是坐标原点
,半径为
;圆弧
过点
.
(I)求圆弧的方程;
(II)已知直线:
与“葫芦”曲线
交于
两点.当
时,求直线
的方程.
(本题满分12分)
已知函数f(x)=x2+ax-lnx,a∈R;
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然对数的底数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
已知O(0,0)、A(,0)为平面内两定点,动点P满足|PO|+|PA|=2.
(I)求动点P的轨迹方程;
(II)设直线与(I)中点P的轨迹交于B、C两点.求△ABC的最大面积及此时直线l的方程。
已知函数为常数),且方程
有两实根3和4
(1)求函数的解析式;(2)设
,解关于
的不等式:
(本题满分12分)
已知数列的前
项和,
。
(I)求数列的通项公式
;
(II)记,求
.
(本小题满分12分)
一圆与轴相切,圆心在直线
上,在
上截得的弦长为
,
求圆的方程。