设定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上的任意一点,O为坐标原点,设向
量
=
,
,
=(x,y),当实数λ满足x="λ" x1+(1-λ) x2时,记向
量
=λ
+(1-λ)
.定义“函数y=f(x)在区间[x1,x2]上可在标准k下线性近似”是指
“
k恒成立”,其中k是一个确定的正数.
(1)设函数 f(x)=x2在区间[0,1]上可在标准k下线性近似,求k的取值范围;
(2)求证:函数
在区间
上可在标准k=
下线性近似.
(参考数据:e
=2.718,ln(e-1)=0.541)
已知命题
:方程
表示椭圆;
:方程
表示双曲线. 若“
或
”为真,“
且
” 为假,求实数
的取值范围.
如图,
中
,平面
外一条线段AB满足AB∥DE,AB
,AB⊥AC,F是CD的中点.
(1)求证:AF∥平面BCE
(2)若AC=AD,证明:AF⊥平面
某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖,.求a和b至少有一人上台抽奖的概率;
已知椭圆
的离心率与双曲线
的离心率互为倒数,直线
与以原点为圆心,以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(3)设第(2)问中的
与
轴交于点
,不同的两点
在
上,且满足
,求
的取值范围.
如图,已知四棱锥
中,底面
为菱形,
平面
,
,
分别是
的中点.
(1)证明:
平面
;
(2)取
,若
为
上的动点,
与平面
所成最大角的正切值为
,求二面角
的余弦值。