游客
题文

已知数列{an},且x=是函数f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一个极值点.数列{an}中a1=t,a2=t2(t>0且t≠1) .
(1)求数列{an}的通项公式;
(2)记bn=2(1-),当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;
(3)若cn,证明:( n∈N).

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.
(I)若从袋中一次摸出2个小球,求恰为异色球的概率;
(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数都没有超过红球的个数,记此时红球的个数为,求的分布列及数学期望E.

已知向量,设函数.
(Ⅰ)求的最小正周期与最大值;
(Ⅱ)在中,分别是角的对边,若的面积为,求的值.

设函数.(Ⅰ)当时,解不等式
(Ⅱ)当时,不等式的解集为,求实数的取值范围.

直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数),为直线与曲线的公共点. 以原点为极点,轴的正半轴为极轴建立极坐标系.
(Ⅰ)求点的极坐标;
(Ⅱ)将曲线上所有点的纵坐标伸长为原来的倍(横坐标不变)后得到曲线,过点作直线,若直线被曲线截得的线段长为,求直线的极坐标方程.

已知函数处取得极值.
(Ⅰ)求的值;
(Ⅱ)证明:当时,.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号