已知函数在
处取得极值.
(Ⅰ)求的值;
(Ⅱ)证明:当时,
.
已知圆过定点
,圆心
在抛物线
上,
、
为圆
与
轴的交点.
(Ⅰ)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(Ⅱ)当圆心在抛物线上运动时,
是否为一定值?请证明你的结论.
(Ⅲ)当圆心在抛物线上运动时,记
,
,求
的最大值,并求出此时圆
的方程.
已知等比数列中,
,公比
,
又恰为一个等差数列的第7项,第3项和第1项.
(1)求数列的通项公式;
(2)设,求数列
如图,在三棱锥中,直线
平面
,且
,又点
,
,
分别是线段
,
,
的中点,且点
是线段
上的动点.
(1)证明:直线平面
;
(2)若,求二面角
的平面角的余弦值.
已知函数,x∈R.
(1)求函数f(x)的最小正周期及对称轴方程;
(2)当时,求函数f(x)的最大值和最小值及相应的x值.
已知圆心在第二象限内,半径为的圆
与
轴交于
和
两点.
(1)求圆的方程;
(2)求圆的过点A(1,6)的切线方程;
(3)已知点N(9,2)在(2)中的切线上,过点A作N的垂线,垂足为M,点H为线段AM上异于两个端点的动点,以点H为中点的弦与圆交于点B,C,过B,C两点分别作圆的切线,两切线交于点P,求直线
的斜率与直线PN的斜率之积.