已知椭圆C:的左、右焦点分别为F1 ,F2,若椭圆上总存在点P,使得点P在以F1,F2为直径的圆上.
(1) 求椭圆离心率的取值范围;
(2) 若AB是椭圆C的任意一条不垂直x轴的弦,M为弦的中点,且满足(其中
分别表示直线AB、OM的斜率,0为坐标原点),求满足题意的椭圆C的方程.
(本题满分13分) 已知函数,
.
(1)当时,若
上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对:存在
,使得
的最大值,
的最小值;
(本题满分13分已知数列是公比为
的等比数列,且
成等差数列.
(Ⅰ) 求的值;
(Ⅱ) 设数列是以2为首项,
为公差的等差数列,其前
项和为
,
试比较与
的大小.
(本题满分13分)已知函数满足
且对于任意
, 恒有
成立. (1) 求实数
的值; (2) 解不等式
.
(本小题满分12分) (Ⅰ)小问7分,(Ⅱ)小问5分.)
已知O为坐标原点,向量=(sinα,1),=(cosα,0),=(-sinα,2),点P是直线AB上的一点,且点B分有向线段的比为1.
(1)记函数f(α)=·,α∈,讨论函数f(α)的单调性,并求其值域;
(2)若O、P、C三点共线,求|+|的值.
(本小题满分12分),(Ⅰ)小问5分,(Ⅱ)小问7分)
设的内角A、B、C的对边长分别为a、b、c,且3
+3
-3
=4
bc .
(Ⅰ) 求sinA的值;
(Ⅱ)求的值.