(本题满分13分已知数列是公比为
的等比数列,且
成等差数列.
(Ⅰ) 求的值;
(Ⅱ) 设数列是以2为首项,
为公差的等差数列,其前
项和为
,
试比较与
的大小.
如图,在中,
边上的中线
长为3,且
,
.
(Ⅰ)求的值;(Ⅱ)求
边的长.
已知,
.
(1)若,求
的值;
(2)若,
求
的值.
如图,正三棱柱中,点
是
的中点.
(Ⅰ)求证: 平面
;
(Ⅱ)求证:平面
.
已知函数,
.
(1)若, 函数
在其定义域是增函数,求
的取值范围;
(2)在(1)的结论下,设函数的最小值;
(3)设函数的图象
与函数
的图象
交于点
,过线段
的中点
作
轴的垂线分别交
、
于点
、
,问是否存在点
,使
在
处的切线与
在
处的切线平行?若存在,求出
的横坐标;若不存在,请说明理由.
已知数列的前
项和
满足:
(
为常数,且
).
(1)求的通项公式;
(2)设,若数列
为等比数列,求
的值;
(3)在满足条件(2)的情形下,设,数列
的前
项和为
,求证:
.