本题共有2个小题,第(1)小题满分4分,第(2)小题满分10分.
设三角形的内角
所对的边长分别是
,且
.若
不是钝角三角形,求:
(1)角的范围;
(2)的取值范围.
(本小题满分为10分)设数列的前
项和为
,已知
(
,
为常数),
,
.
(1)求数列的通项公式;
(2)求所有满足等式成立的正整数
,
.
(本小题满分为10分)如图,将长为4,宽为1的长方形折叠成长方体ABCD-A1B1C1D1的四个侧面,记底面上一边,连接A1B,A1C,A1D.
(1)当长方体ABCD-A1B1C1D1的体积最大时,求二面角B-A1C-D的值;
(2)线段A1C上是否存在一点P,使得A1C平面BPD,若有,求出P点的位置,没有请说明理由.
平面直角坐标系中,直线的参数方程是
,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为
(1)求直线的极坐标方程
(2)若直线与曲线C相交于A,B两点,求|AB|
设矩阵,矩阵A属于特征值
的一个特征向量
,属于特征值
的一个特征向量
,求
的值
(本小题满分为16分)已知函数.
(1)若,求函数
的极值,并指出极大值还是极小值;
(2)若,求函数
在
上的最值;
(3)若,求证:在区间
上,函数
的图象在
的图象下方.