(本题14分)
已知向量动点
到定直线
的距离等于
并且满足
其中
是坐标原点,
是参数.
(1)求动点的轨迹方程,并判断曲线类型;
(2)当时,求
的最大值和最小值;
(3)如果动点的轨迹是圆锥曲线,其离心率
满足
求实数
的取值范围。
(本小题满分12分)
某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为
的等边三角形的三个顶点.
(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到
外),则此次射击的着弹点距
的距离都超过
的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间
内.现从这
次射击成绩中随机抽取两次射击的成绩(记为
和
)进行技术分析.求事件“
”的概率.
.(本小题满分12分)
设是实数,有下列两个命题:
空间两点
与
的距离
.
抛物线
上的点
到其焦点
的距离
.
已知“”和“
”都为假命题,求
的取值范围.
(本小题满分14分)
已知函数是定义在
上的周期函数,周期
,函数
是奇函数.
又知在
上是一次函数,在
上是二次函数,且在
时函数取得最小值
.
(1)证明:;
(2)求的解析式;
(3)求的解析式.
(本小题满分13分)
某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58.为了预测以后各月的患病
人数,甲选择了模型,乙选择了模型
,其中
为患病人数,
为月份数,都是常数.结果4月,5月,6月份的患病人数分别为66,82,115,
你认为谁选择的模型较好?
(本小题满分12分)
在平面直角坐标系中,点
.
(1)求以线段为邻边的平行四边形两条对角线的长;
(2)设实数满足
,求
的值.